
Network Power Scheduling for TinyOS Applications

Barbara Hohlt and Eric Brewer

Electrical Engineering and Computer Sciences Department
University of California at Berkeley

Berkeley, CA USA
{hohltb, brewer}@eecs.berkeley.edu

Abstract. This paper presents a study of the Flexible Power Scheduling protocol
and evaluates its use for real-world sensor network applications and their plat-
forms. FPS uses dynamically created schedules to reserve network flows in sen-
sor networks allowing nodes to turn off their radio during idle times. We show
that network power scheduling has high end-to-end packet reception and can
achieve power savings of 2-5x for two well-known TinyOS applications over
their existing power-management schemes, and over 150x compared with no
power management. Twinkle is our second-generation implementation of FPS
and provides additional application support.

1 Introduction

Power is one of the dominant problems in wireless sensor networks. Constraints
imposed by the limited energy stores on individual nodes require planned use of
resources, particularly the radio. Sensor network energy use tends to be particularly
acute as deployments are left unattended for long periods of time, perhaps months or
years. Communication is the most costly task in terms of energy [2,9,27,21]. At the
communication distances typical in sensor networks, listening for information on the
radio channel is of a cost similar to transmission of data [23]. Worse, the energy cost
for a node in idle mode is approximately the same as in receive mode. Therefore, pro-
tocols that assume receive and idle power are of little consequence are not suitable for
sensor networks. Idle listening, the time spent listening while waiting to receive pack-
ets, comprises the most significant cost of radio communication. Even for hand-held
devices Stemm et al. observed that idle listening dominated the energy costs [30].
Thus, the biggest single action to save power is to turn the radio off during idle times.

Unfortunately, turning the radio off implies that you must know that the radio will
be idle in advance, and the easiest way to do this is to have a schedule. An obvious
approach is to use TDMA to turn the radio off at the MAC layer during idle slots.
However, this requires tight time synchronization and typically hardware support.
Scheduling network flows helps for multi-hop topologies, which play a significant role
in wireless sensor networks. Pottie and Kaiser [21] cover the many advantages of
multi-hop topologies, including reduced energy use and routing around obstructions.
In multi-hop networks the farthest nodes have more chances to drop packets, and thus
using only hop-by-hop decisions (rather than flows), as with any MAC-layer approach,
tend to achieve lower bandwidth and less fairness.

P. Gibbons et al. (Eds.): DCOSS 2006, LNCS 4026, pp. 443 – 462, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Flexible Power Scheduling (FPS) [13] introduced the approach of scheduling the
network for power savings in sensor networks and proposed a two-level architecture
that combines coarse-grain dynamic scheduling at the network layer to plan radio on-
off times, and simple CSMA to handle channel access at the MAC-layer. The FPS
paper presented the distributed scheduling algorithm details and microbenchmarks, but
no performance evaluation with real applications.

In this paper we present a study of the FPS protocol and evaluate its use for real-
world sensor network applications with studies of two well-known sensornetwork
applications, GDI and TinyDB, on three mote platforms, mica, mica2dot, and
mica2. Our second-generation implementation of FPS, named Twinkle1, is used in
these studies. We compare the power savings of GDI and TinyDB running their default
radio power management against these two applications running Twinkle radio power
management.

The main contribution of this paper is the implementation and evaluations from
two real applications using Twinkle, our second-generation implementation of FPS. In
particular, we provide an application-level evaluation of the power savings using two
well-known and deployed TinyOS applications [11]: the Great Duck Island [18,31]
deployment and a TinyDB application that collects data on Redwood trees [17, 29].
We also compare Twinkle with low-power listening, an alternative proposal for power
savings.

The contributions of this paper include:

• An implementation and evaluation of network power scheduling with two well-
known TinyOS applications accross three platforms

• A 4x power savings for the Great Duck Island application.
• A 4.3x power savings for a 35-mote sensor network using TinyDB, compared

with the default “duty cycling” power management scheme, and 150X versus
no power management.

• A detailed comparison between Twinkle and Low-Power Listening with
measured power data from real motes. This reveals a 2x or more power savings
due to Twinkle.

Section 2 presents an overview of the basic FPS scheduling approach to provide
background for these studies. Section 3 and Section 4 present evaluations using two
real applications. Finally, Section 5 covers related work, and we conclude in Section 6.

2 Background

Flexible Power Scheduling (FPS) [13] introduced the approach of scheduling the net-
work for power savings in sensor networks and proposed a two-level architecture that
combines coarse-grain dynamic scheduling at the network layer to plan radio on-off
times, and simple CSMA to handle channel access at the MAC-layer. The original pro-
tocol only supported communication in one direction, from the network to the gate-
way. Twinkle is our second-generation implementation of the FPS protocol and adds
1 The name “Twinkle” comes from observing the network: scheduling avoids collisions and

thus the network twinkles if you turn on an LED every time a node transmits.

444 B. Hohlt and E. Brewer

broadcast capability to enable communication from the gateway to the network while
running the FPS protocol.

In this section we give a general description of the FPS protocol with an overview
of the new broadcast support to provide context for the studies that follow. The focus
and scope of this paper is to provide real-world experiences and evaluations of FPS
with TinyOS applications and their platforms.

2.1 Power Scheduling

Power scheduling is primarily useful for low-bandwidth long-lived data-gathering
applications such as GDI and TinyDB. The FPS scheme exploits the structure of a tree
to build the schedule, which makes it useful primarily for data collection applications,
rather than those with any-to-any communication patterns. A large class of TinyOS
applications fit this model, including equipment tracking, building-wide energy moni-
toring, habitat monitoring [31, 29], conference-room reservations [5], art museum
monitoring [26], and automatic lawn sprinklers [8]. The basic approach is to use a
schedule that tells every node when to listen and when to transmit. As the bandwidth
needs are low, most nodes are idle most of the time, and the radio can be turned off
during these periods.

FPS scheduling is receiver initiated. In particular, the schedule spreads from the
root of the tree down to the leaves based on the required bandwidth: parents advertise
available slots and children that need more bandwidth request a slot. Applied recur-
sively, this allows bandwidth allocation for all of the nodes in the network. Although
this schedule ensures that parents and their children are contention free, there may still
be contention due to other nodes in the network or poor time synchronization; how-
ever, this contention is rare and can be handled by a normal CSMA MAC layer.

FPS reservations correspond to a unit flow from source-node to root, and thus the
schedule is really a schedule of flows. Scheduling flows reduces contention and
increases fairness, and form one reason why higher-level scheduling has more value
than traditional TDMA.To allow adaptive schedules, advertising continues after the
initial schedule is built. If new nodes arrive, or bandwidth demands change, children
can request more bandwidth or release some.

2.2 Making Reservations

Time is divided into cycles and cycles are divided into slots. Each node maintains a
local schedule that indicates in what slot it transmitts, receives, or idles.The main oper-
ation is as follows:

1. Parent selects an idle slot S and advertises the slot
2. Child hears the advertisement and sends a request for slot S
3. Parent receives the request and sends an acknowledgement.

Here the parent node is the route-through node, closest to the base station. In Step
1, the parent node selects an idle slot S at random from its list of idle slots and adver-
tises slot S during slot C (a specific slot known to its children). In Step 2, a child hears
the advertisement and subsequently sends a request for slot S during slot S. In Step 3,
the parent hears and acknowledges requests during time slot S. Thereafter the child

Network Power Scheduling for TinyOS Applications 445

need to be renegotiated and remains in effect until the child cancels the reservation or
the parent times out the reservation because no receptions occur after some number of
cycles. No acknowledgement implies a request was denied, and the child must petition
for the next advertised reservation slot. A parent may additionally advertise slots at
random times i.e. not in the C slot.

A node keeps its radio off during idle time slots. The one exception is when a node
joins the network or switches parents. In this case it must leave its radio on until it
makes an initial reservation and learns the slot C specific to its parent. Although made
locally, these reservations represent bandwidth allocation for entire traffic flows from
source to sink. This is because all nodes preallocate some amount of flow in advance.
Generally speaking, local nodes observe a rule that the amount of transmission slots in
their schedule must be kept greater than the amount of receive slots.

2.3 Partial Flows and Broadcast

The original FPS protocol reserves entire flows from source to sink. Twinkle intro-
duces a new reservation type called partial flows. A partial flow is one that terminates
at some node other than the root, i.e. the reservation is not from source to sink. Partial
flows can be used for various operations such as data aggregation and compression.
For example, partial flows can be used to enable in-network data aggregation, in which
the flow terminates at the node that does the aggregation.

Broadcast is essential for systems like TinyDB that need to inject queries or com-
mands into the network. In Twinkle, a broadcast channel is an instance of a partial
flow. In this case the partial flows are used in the reverse direction: each node reserves
a partial flow with its parent that it will use as a broadcast channel for its children.
Upon joining the network, each node acquires at least one partial flow reservation that
terminates at its parent. This is called the Comm channel (slot C) and is used by the
node as a broadcast channel for sending synchronization packets, advertisements, and
forwarding messages injected from the base station. Twinkle protocol messages
always include the slot number of the Comm channel (slot C). In this way, children
nodes know in which slot to listen for broadcasts from their parent.

Twinkle maintains two forwarding queues: one used for broadcasting or forward-
ing commands away from the base station, and one used for forwarding packets
toward the base station. When a node receives a command message it invokes the
appropriate command message handler and places the message on the command queue
for forwarding. The Comm channel is shared; both injected commands and time sync
packets (with slot advertisements) use the same channel. The convention is if there is a
command to be forwarded that is sent first followed by the time sync packet.

if current slot == Comm slot
if command in command queue

 broadcast command message
endif
broadcast sync packet

endif

transmits during slot S and the parent receives during slot S. The reservation does not

446 B. Hohlt and E. Brewer

The GDI application in Section 3 uses the Comm channel for time sync packets
and injecting commands to start and stop the experiments. The TinyDB application in
Section 4 uses the Comm channel for time sync packet and injecting TinyDB queries.

3 Application: Great Duck Island

Our first target application, GDI [18, 31], is a habitat monitoring application deployed
on Great Duck Island, Maine. GDI is a sense-to-gateway application that sends peri-
odic readings to a remote base station, which then logs the data to an Internet-accessi-
ble database. The architecture is tiered, consisting of two sensor patches, a transit
network, and a remote base station. The transit network consists of three gateways and
connects the two sensor patches to the remote base station. There are two classes of
mica2dot hardware: the burrow mote and the weather mote. The burrow motes
monitor the occupancy of birds in their underground burrows and the weather motes
monitor the climate above the ground surface. In this section, we will draw on infor-
mation about the weather motes provided by the study of the Great Duck Island
deployment [31].

Of the two weather mote sensor patches, one is a singlehop network and the other
is a multihop network. The singlehop patch is deployed in an ellipse of length 57
meters and has 21 weather motes. Data is sampled and sent every 5 minutes. The mul-
tihop network is deployed in a 221 x 71 meter area and has 36 weather motes. Data is
sampled and sent every 20 minutes.

In this section we compare the end-to-end packet reception, or yield, and power
consumption of Twinkle/FPS with the low-power listening technique [12] used at
Great Duck Island. Both schemes will be running the GDI application on a 30 node
laboratory testbed. We will additionally investigate the phenomena of overhearing in
the low-power listening case.

3.1 GDI with Low-Power Listening

The GDI application uses low-power listening to reduce radio power consumption. In
low-power listening, the radio periodically samples the wireless channel for incoming
packets. If there is nothing to receive at each sample, the radio powers off, otherwise it
wakes up from low-power listening mode to receive the incoming packet. Messages
include very long preambles, so they are at least as long as the radio channel sampling
interval. The advantages of low-power listening are that it reduces the cost of idle lis-
tening, integrates easily, and is complementary with other protocols. It is characterized
by high end-to-end packet reception, or yield. This is due to the long packet preamble
acting as an in-band busy-tone.

Density and multihop also impact power consumption. The GDI study [31] reports
a much higher power consumption in the multihop patch than the single hop patch
which resulted in a shortened network lifetime — 63 of the 90 expected days — for the
multihop patch. Two causes are attributed. First, messages have a higher transmission
and reception cost due to their long preambles. Second, nodes wake up from low-
power listening mode not only to receive their own packets, but anytime a packet is
heard, regardless of the destination. Overhearing is the main contributor to the higher
power consumption in the multihop patch.

Network Power Scheduling for TinyOS Applications 447

We also observe that although low-power listening reduces the cost of idle listen-
ing it does not reduce the amount of idle listening, so that at very low data-sampling
intervals its advantage declines because the radio must continue to turn on to check for
incoming packets although there are none to receive. For very low data rates, we will
show that scheduling such as Twinkle becomes more attractive because the radio (and
potentially other subsystems) can be deterministically powered down until it is time to
be used.

3.2 GDI with Twinkle

We implemented a version of GDI in TinyOS that uses Twinkle for its radio power
management. This was a rather straight forward integration that consisted of wiring the
GDI application component to the Twinkle component and disabling low-power listen-
ing. The Vanderbilt TimeSync, SysTime, and SysAlarm [19] components are used for
time synchronization and timers. At the time of this work, TimeSync only supported
the use of SysTime, which uses the CPU clock. The implication being, that for these
experiments, GDI was not able to power manage the CPU. In all of our data presented
here, we subtracted the draw of the CPU as if we had used a low-power Timer imple-
mentation. A version of TimeSync using the external crystal will become available
shortly.

3.3 GDI Experiments

We conducted a total of 12 experiments on two versions of the GDI application. GDI-
lpl uses low-power listening for radio power management and GDI-Twinkle uses
Twinkle for radio power management The experiments were run on a 30-node in-lab
multihop sensor network of mica2dot motes.

Twinkle supports data-gathering type applications like GDI where the majority of
traffic is assumed to be low-rate, periodic, and traveling toward a base station. We ran
a simple routing tree algorithm provided by Twinkle based on grid locations to obtain a
realistic multihop tree topology and then used the same tree topology for the 12 exper-
iments. As is done in the Great Duck Island deployment, no retransmissions are used
in these experiments.

In each experiment we varied the data sample rate: 30 seconds, 1 minute, 5 minute,
and 20 minutes. For experiments with 30 second and 1 minute sample rates, 100 mes-
sages per node were transmitted. For experiments with 5 minute and 20 minute sample
rates, 48 and 12 messages were transmitted per node respectively. In the GDI-lpl
experiments we varied the channel sampling interval: 485 ms and 100 ms. All experi-
ments collected node id, sequence number, routing tree parent, routing tree depth, node
temperature, and node voltage. The GDI-Twinkle experiments additionally collected
the number of children, number of reserved slots, current transmission slot, current
cycle, and number of radio-on slots per sample period.

3.4 Measuring Power Consumption

During the experiments, we measure the power consumption directly, using an oscillo-
scope, of two nodes located in two separate places of interest in the network. One
node, we call the inner node, is located one hop from the base station and has a heavy

448 B. Hohlt and E. Brewer

amount of route-through traffic that is similar to its routing one-hop siblings. This
should give us an estimate of the maximum lifetime of the network. This is a common
method, documented by several researchers, for example [29]. In addition we measure
the current at a second node. The second node is a leaf node that is one-hop from the
base station as well. As it does not route-through any traffic, we should be able to see
the effect of overhearing on power consumption at a node in a busy part of the net-
work. If the measured current of the inner node and leaf node are similar in their active
cycles, then we know the inner node is experiencing overhearing since all other factors
remain the same. This is an important aspect of evaluating low-power listening.

At the lower sample rates, it is not feasible to take a measurement over the entire
sample period, so we design our experiments so that we take some direct measure-
ments and extrapolate others. For GDI-Twinkle, we define a cycle to be 30 seconds.
Thus, full sample periods for the 30-second, 1-minute, 5-minute, and 20-minute sam-
ple rates are 1, 2, 10, and 40 cycles respectively. We schedule all data traffic during one
cycle of each sample period called the active cycle. The unscheduled cycles are called
passive cycles. Both active and passive cycles include protocol traffic (i.e. sending
advertisements and listening for requests). We then measure the current at the two
motes capturing data from both active and passive cycles during the 1 minute sample
rate experiment. Then we take a running windowed average over a full 1-minute
period, which gives us the power draw for both an active and passive cycle. Table 1
presents these direct power measurements.

For GDI-lpl we follow a similar method. We measure current at the two motes cap-
turing data from both active and passive periods during the 1-minute sample period
experiment. To represent an active period, we take a running average over the full 1-
minute period. This also captures all the overhearing that occurs at the mote during a
full period of any given sample rate. To represent a passive period, we took the longest
chain of data from the measurements in which only idle channel sampling occurred.
From this information we calculate the power consumption for the 5-minute and 20-

Table 1. Power Measurement (mW)

Power
Management

Period
(Sec)

Inner
(mW)

Leaf
(mW)

Twinkle active 30 2.18 0.69

Twinkle passive 30 0.33 0.33

Lpl-485 active 60 16.5 16.0

Lpl-485 passive 60 0.99 0.99

Lpl-100 active 60 8.20 7.60

Lpl-100 passive 60 3.90 3.90

Network Power Scheduling for TinyOS Applications 449

minute sample rate experiments. The 30-second sample rate was measured separately
(not calculated) and is shown in Table 1.

3.5 Evaluation

In this section we discuss the results of the data from all 12 experiments, and we also
compare with the actual GDI deployment data.

Power Comparison with Low-Power Listening. Given the direct power measure-
ments from Table 1, we can estimate the power consumption for the 5-minute and 20-
minute sample rate experiments. For example, for Twinkle, we read off the following:
an active cycle at the inner mote consumes 2.18 mW and a passive cycle consumes
0.33 mW. Given these numbers, for a 20-minute sampling rate we expect 1 active
cycle and 39 passive cycles, for a weighted average of 0.38 mW. For the leaf mote, an
active cycle consumes 0.69 mW and a passive cycle consumes 0.33 mW, giving a
weighted average of 0.34 mW.

Similarly, to compute the GDI-lpl power consumption at a 20-minute sample rate
we assume that for one minute the application consumes the energy of the active
period and for the remaining 19 minutes the application consumes the energy of the
passive period. Using the values from Table 1, the inner mote during the 20-minute
sample rate Lpl-100 experiment, would consume an average of 4.12 mW
((8.2+19*3.9)/20 = 4.12mW).

Figure 1 shows all four sample periods: the 30-second and 1-minute rates are mea-
sured, and the 5-minute and 20-minute periods are estimated as above. For Twinkle,
the inner node consistently has a greater draw than the leaf node. In contrast, for LPL,
the inner and leaf nodes consistently have almost the same draw. This indicates that
Twinkle's main power draw depends on the routed traffic, and in most of the cases
LPL's main power draw depends on the overheard traffic. However, from Table 1 we
see the passive power draw for LPL-100 is 3.9 mW, which forms an asymptote as the

0

5

10

15

20

Inner Leaf

P
o

w
er

 (
m

W
)

0

5

10

15

20

25

30

Inner Leaf

P
o

w
er

 (m
W

)

0

2

4

6

8

10

Inner Leaf

P
ow

er
 (

m
W

)

Twinkle
Lpl-485
Lpl-100
Pulse

0

1

2

3

4

5

6

Inner Leaf

P
ow

er
 (

m
W

)

Sample Period: 30 sec Sample Period: 1 min

Sample Period: 5 min Sample Period: 20 min

Fig 1. Relative power consumption of Twinkle and LPL for four different sample periods.
 Pulse is a newer version of LPL discussed below

.
.

450 B. Hohlt and E. Brewer

sample period increases. Overall, as the sample rate gets lower and the preambles get
shorter, overhearing does not play as big role.

The next thing to notice is at the higher sample rates, LPL-485 has a higher power
consumption than LPL-100, but at the lower sample rates, LPL-485 has a lower power
consumption than LPL-100. This reveals a relationship within LPL where as the cost
of transmitting increases with longer preambles, the cost of channel sampling
decreases with longer sampling intervals.

Finally, we added a newer variation of LPL to the figure, called Pulse. Pulse was
developed as part of BMAC [20], and optimizes the power consumption of LPL by lis-
tening for energy in the channel rather than the decoded preamble. This reduces the
cost of listening substantially. Because it has much stricter timing constraints, Pulse
cannot run on the mica2dot platform. However, we can compute the active and pas-
sive estimates for Pulse as if it were running on the mica2dot given our power traces
and Table 2 from the BMAC paper, which provides the raw listening cost. Although
Pulse does perform better than LPL, it is still 2x to 5x higher power consumption than
Twinkle. Across the board, Twinkle has better power consumption than LPL, with
improvements that range from 2x (over Pulse for low rates) to 10x (in cases where the
listening interval is poorly chosen).

Table 2. Yield and Fairness Comparison

Power
Scheme

Sample
Period

Yield
Max/
Min

Twinkle 0.5 0.80 2.11

Twinkle 1 0.90 1.74

Twinkle 5 0.84 1.92

Twinkle 20 0.83 2.4

Lpl-485 0.5 0.40 15.6

Lpl-485 1 0.68 94.0

Lpl-485 5 0.72 11.8

Lpl-485 20 0.69 12.0

Lpl-100 0.5 0.85 3.45

Lpl-100 1 0.83 2.23

Lpl-100 5 0.78 2.76

Lpl-100 20 0.77 4.00

Network Power Scheduling for TinyOS Applications 451

Yield and Fairness. Table 2 shows the average yield (end-to-end packet reception) for
all 12 experiments, and the ratio of the best and worst throughputs (Max/Min). This
ratio indicates fairness: lower ratios are more fair. At 30 seconds, the LPL-485 network
is saturated due to the long preambles and this accounts for its low yield. Overall, both
Twinkle and LPL-100 are significantly better than LPL-485. Twinkle shows better
fairness than LPL-100 and, other than the 30 second sample rate, Twinkle has higher
yield than LPL-100.

Understanding the GDI Field Study. Viewing the data in comparison to the data pro-
vided by the GDI study [31], we find the results in the laboratory are remarkably close
to the results in the field.The Great Duck Island deployment used a low-power listen-
ing channel sampling interval of 485 ms, a data sample period of 20 minutes in the
multihop patch, and a data sample period of 5 minutes in the singlehop patch.

Table 3 presents results taken from the GDI field study, labeled GDI-485, and

includes data from four of our in-lab experiments, labeled LPL-485 and Twinkle. For
each row, we report the sample period, average yield, inner and leaf power consump-

tion, and the number of nodes in the experiment. For GDI-485, the yield figure repre-
sents the average yield from the first day of deployment.

A close comparison can be drawn between LPL-485 and GDI-485 at the 20 minute
sample rate. LPL-485 has a power draw of ~1.76 mW while GDI-485 has a power
draw of 1.6 mW. The GDI-485 figure is expected to be lower for two reasons: in the
laboratory, the two measured nodes are from the busier section of the testbed, and the
testbed has a constant load rather than a decreasing one. In the GDI deployment, some
multihop motes died and stopped sourcing traffic, which is why we report yield from

the first day of deployment.
The yield data is extremely close as well. All yields for LPL-485 and GDI-485 are

~70%. The only large difference between the two data sets is the power consumption

Table 3. Comparison of our lab data with the actual GDI field study

Power
Mgnt

Sample
Period

Yield Inner
(mW)

Leaf
(mW)

#

GDI-485
(single)

5 0.70 n/a 0.71 21

GDI-485
(multi)

20 0.70 1.60 n/a 36

Lpl-485 5 0.72 4.09 3.99 30

Lpl-485 20 0.69 1.77 1.74 30

Twinkle 5 0.84 0.52 0.36 30

Twinkle 20 0.83 0.38 0.34 30

452 B. Hohlt and E. Brewer

at the 5-minute sample period. This is easily explained by recalling that at the 5-minute
sample period, GDI-485 is singlehop while LPL-485 is multihop, and the LPL-485
measurements include a large amount of overhearing.

The closeness of the LPL-485 and GDI-485 data gives us high confidence in the
corrrectness of our methodology and the results of our laboratory experiments. We
expect the Twinkle numbers are a good estimate of how Twinkle would do were we to
have access to a field deployment. Our laboratory experiments show that Twinkle con-
sumes at least 4x less power and provides about 14% better yield.

4 Application: Redwoods with TinyDB

Our second target application, TinyDB [17], is a distributed query processor for Tin-
yOS motes. TinyDB consists of a declarative SQL-like query language, a virtual data-
base table, and a Java API for issuing queries and collecting results. Conceptually the
entire network is viewed as a single table called sensors where the attributes are inputs
of the motes (e.g. temperature, light) and queries are issued against the sensors table.
The SQL language is extended to include an “EPOCH DURATION” clause that speci-
fies the sample rate.

A typical query looks like this:

SELECT nodeid, temperature
FROM sensors
EPOCH DURATION 3 min

TinyDB allows up to two queries running concurrently: one for sensor readings and
one for network monitoring. In this section we compare the power savings of TinyDB
using Twinkle versus TinyDB using application-level duty cycling — the power man-
agement scheme currently used in TinyDB. We estimate the power savings of the two
approaches using the TinyDB Redwood deployment in the Berkeley Botanical Garden
[14] as our topology and traffic model.

4.1 Estimating Power Consumption

Determing the power consumption of TinyDB with application-level duty cycling is
straight forward. For this analysis we will estimate the power consumption of both the
mica and mica2 platforms and take an in-depth look at a radio trace generated by
TinyDB with Twinkle. We use the following three-part methodology:

1. Estimate the amount of time the radio is on and off for each scheme. Our met-
ric for this will be radio on time per hour, measured in seconds.

2. For Twinkle, we validate this estimate in Section 4.5 by looking in detail at one
of the motes. The radio on time for application-level duty cycling is easy to
estimate.

3. We use actual measured current we obtained from mica and mica2 motes
using an oscilloscope (Table 6) to estimate power consumption for radio on/off
times. (In the GDI application we measured the current directly during the
experiment.)

Network Power Scheduling for TinyOS Applications 453

Listening for information on the radio channel is of a cost similar to transmission
of data [23,24,4], so this combination provides a reasonably accurate overall view of
power consumption, which although not perfect, is certainly very accurate relative to
the 4.3X advantage in power shown by Twinkle in Section 4.6.

4.2 Topology and Traffic Model

The Redwood deployment has 35 mica2dot motes dispersed across two trees reporting
to one base station in the Berkeley Botanical Gardens. Each tree has 3 tiers of 5 nodes
each and 2 nodes placed at each crest. One tree has 1 additional node at a bottom
branch. Every 2.5 minutes each mote transmits its query results, which are multi-
hopped and logged at the base station.

By examining the records in the redwood database, we can derive the actual topol-
ogy information, and from this construct a general topology that reflects its state the
majority of the time.

Out of 35 nodes, generally 2/3 of the nodes are one hop from the base station and 1/
3 of the nodes are two hops from the base station at any given time. We start by com-
puting the radio on time per hour for the case with no power management:

60 sec/min * 60 min/hour = 3600 sec/hour
No power management = 3600 sec/hour

This number is the average amount of time each radio is on per hour throughout the
deployment. We next estimate this metric for duty cycling followed by an estimate for
FPS.

4.3 Duty Cycling

In TinyDB duty cycling, the default power management scheme, all nodes wake up at
the same time for a fixed waking period every EPOCH. During the waking period
nodes exchange messages and take sensor readings. Outside the waking period the
processor, radio, and sensors are powered down. Estimating the radio-on time is thus
straightforward: all 35 nodes wake up at the same time every 2.5 minutes for 4 seconds
and exchange messages. The sample rate is thus 24 samples per hour. Each node is on
for 96 sec/hour.

24 samples/hour * 4 sec/sample = 96 sec/hour
Duty Cycling = 96 sec/hour

As expected, this approach is subject to very high packet losses due to the conten-
tion produced by exchanging packets at nearly the same time. A recent TinyDB empir-
ical study [29] shows high losses, between 43% and 50%, and high variance using duty
cycling. Although we do not test it explicitly, there is no reason to expect the yield for
Twinkle (or low-power listening) would deviate from the 80% shown in Section 3.

4.4 Twinkle
Topology, time-slot duration, protocol traffic, and data traffic are factors in estimating
the radio-on time for Twinkle. We will use the same topology as above for estimating

454 B. Hohlt and E. Brewer

the radio-on time of the 35 nodes. Time-slot duration and number of slots per cycle are
configuration parameters in Twinkle. For this example, the time slot duration is 128 ms
and for simplicity, the number of slots per cycle is 1172, which is roughly 2.5 minutes.
Because of the long cycle length, we will add an extra advertisement per cycle.

Figure 2 depicts our subtree topology and traffic model. Solid lines represent data
traffic (T/R) that is forwarded from the network to the base station every cycle. Dashed
lines represent a Broadcast channel used for protocol traffic (B/RB). The Broadcast
channel is used for TinyDB queries, network protocol messages, and advertisements.

Given the topology in Figure 2 and traffic in Table 4 we can now calculate the
radio-on time for each node. Node 0 is the base station and has no cost. There is a cost
of 3 time slots for advertisements (A): one advertisement, one receive pending, and
one receive pending for the advertisement sent during the Broadcast.

Thus, this model captures data traffic as well as protocol traffic (i.e. sending adver-
tisements and listening for requests).

For each node the cost is 0.767 seconds per cycle:

5(T/R) + 4(B/RB)+ 9(A)
= 18 * 128ms
= 2.3 sec/cycle per 3 nodes
= 0.767 sec/cycle (per node)

Table 4. Traffic per Cycle (number of time slots)

Node T R B RB A

1 1 0 1 0 3

2 2 1 1 1 3

3 1 0 1 0 3

Fig 2. Topology and Traffic for Estimates

0

2

3

1

Traffic
Comm

0

2

3

1

Traffic
Comm

 .

Network Power Scheduling for TinyOS Applications 455

At 24 samples per hour, on average, each node is on 18.4 sec/hour:
24 samples/hour * 0.767 sec/cycle

= 18.4 sec/hour

Twinkle = 18.4sec/hour

This is a savings of 5.2x compared with the duty cycle approach and 196x com-
pared with no power management. In addition, the radio-on time is actually overesti-
mated. Transmit slots do not leave the radio on for the whole slot since they can stop
once their message is sent; this is shown in detail in the next section.

4.5 Twinkle Validation and Radio Trace

We implemented a prototype of TinyDB that uses Twinkle for radio power manage-
ment. To validate our prototype and the radio on/off times, we ran the following exper-
iment on three mica2dot motes and one mica2 mote as base station arranged in a
topology shown in Figure 2. We monitored intermediate node 2 while it forwarded
packets and sent advertisements. There are 64 slots of 128 ms each per cycle. We
instrumented TinyDB-Twinkle to record the time of each call to turn the radio on and
radio off, the beginning time of each time slot, and the state of each slot.

From the TinyDB Java tool we issue the query:

SELECT nodeid
FROM sensors
EPOCH DURATION 8192 ms

The intermediate mote is connected to an Ethernet device, and the debug records
are logged over the network to a file on the PC. The regular query results are multi-
hopped to the base station and displayed by the Java tool. In this experiment, we
expect to have 1 advertisement, 2 receive pending slots, 3 transmit slots (one is a
broadcast), 2 receive slots, and 56 idle slots per 64-slot cycle. We validate both the
count of idle slots against the radio off time shown in Table 5.

Note that the radio off time is higher than the percentage of idle slots because
Transmit slots turn the radio off early — as soon as their messages have been sent.

Table 5. Validating Idle Slots

Metric Slots Idle %

Predicted Idle Slots 56/64 89.1%

Measured Idle Slots 56/64 89.1%

Measured Radio Off Time — 91%

456 B. Hohlt and E. Brewer

Figure 3 shows a subsection of the validation experiment. The top graph shows
actual radio on/off times (milliseconds). The bottom graph shows the measured Twin-
kle state versus slot numbers aligned with time; this subsection shows the active por-
tion of a cycle (slots not shown are idle). Note that the radio is always off for Idle slots
and that for Transmit slots the on time is just long enough to transmit the queued mes-

sages. In this experiment, the time slot duration is 128 ms, there are 64 slots per cycle,
and the advertising frequency is once per cycle. This cut shows two advertisement

slots, which is fine given that they are actually in two different cycles.
This experiment validates our methodology and shows that the power estimate for

Twinkle in the previous section is actually conservative (since we count all of the
Transmit slot time).

4.6 Power Savings

Finally, given the validated radio on times, we can estimate the power savings. First,
however we need to know the current draw for a mote depending on whether or not the
radio is on, and/or the CPU is on. With an oscilloscope, we measured the current of the
mica and mica2 motes in three states: asleep, cpu idle, and both cpu and radio on.
The results are shown in Table 6.2

Given these current draws, we estimate power consumption as:

Power (mAh) =
(On time)*(On draw) + (Off time)*(Off draw)

Using this equation and the radio-on times summarized in Table 7, we estimate the
power consumption depicted in Figure 4. In all cases, both Duty Cycling and Twinkle
perform substantially better (lower power) than no power management, so we focus on
the difference between Twinkle and Duty Cycling.

2 Mica2 radio power varies from 7.4 to 15.8 mA depending on transmit power, plus 7.8 mA
for the active CPU draw for a total of 15.2 to 23.6 mA. We use 20mA as an overall estimate.

Fig 3. A subsection of the validation experiment. The top graph shows actual radio on/ off
times in milliseconds. The bottom graph shows the measured Twinkle state versus slot numbers

 aligned with time
.

 Note that the radio is always off for Idle cycles and that for Transmit
 cycles the on time is just long enough to transmit the queued messages

Milliseconds

.

Network Power Scheduling for TinyOS Applications 457

The biggest issue for estimating the power savings is whether or not the CPU is
asleep when the radio is off. Neither system needs the CPU per se during idle times,
but some sensors may require CPU power. Thus we expect for both the mica1 and
mica2 the “CPU asleep” numbers are more realistic and we will quote these in our
overall conclusions. However, we include the “CPU on” case for completeness. Note
that even for cases where the CPU is needed for sensor sampling, the “CPU asleep”
graph is more accurate, since the CPU would be asleep most of the time.

For the CPU on case, Twinkle outperforms Duty Cycling by 37% on the mica1
and 8% on the mica2, which has a higher CPU current draw. Compared to no power
management, the advantage for Twinkle is 18X and 5X respectively.

For the more realistic “CPU asleep” case, i.e. the CPU is asleep during Idle slots,
Twinkle outperforms Duty Cycling by 4.4X on the Mica1 and 4.3X on the Mica2.
Note that this is consistent with the 5.2X reduction in radio on time. Compared to no
power management, the advantage for Twinkle is 160X and 150X respectively.

Thus to summarize, for the TinyDB application with the Redwood study workload,
we see a power savings of about 4.3X over Duty Cycling and 150X over no power
management.

5 Related Work

Power consumption is an important issue in wireless sensor networks and energy opti-
mizations are considered at all layers of the hardware and software platform. Many
researchers have investigated energy efficient protocols in software to reduce commu-
nication costs.

In the area of energy-efficient MAC layers, there are two broad classes of
approaches: contention based [22,33,7] and TDMA based [28,1,6]. PAMAS [22]
enhances the MACA protocol with the addition of a signaling channel. It powers down
the radio when it hears transmissions over the data channel or receptions over the sig-
naling channel. S-MAC [33] incorporates periodic listen/sleep windows of fixed sizes
similar to 802.11 PS mode [16]. In order to communicate, neighboring nodes periodi-
cally exchange their listen schedules. In the listen phase nodes transmit RTS/CTS
packets and in the sleep phase nodes either transmit data or sleep if there is no data to

Table 6. Power Consumption of Motes (mA)

Table 7. On Times (seconds per hour)

Scheme Radio On Time Ratio

None 3600 196

Duty Cycling 96 5.2

Twinkle 18.4 1

Mote Asleep CPU Idle CPU+Radio On

Mica1 0.01 0.4 8.0

Mica2 0.03 3.9 20

458 B. Hohlt and E. Brewer

send. T-MAC [7] is a variation on S-MAC. Instead of using a fixed listen window size,
it transmits all messages in bursts of variable length, and sleeps between bursts.

TDMA-based protocols have natural idle times built into their schedules where the
radio can be powered down. Additionally they do not have to keep the radio on to
detect contention and avoid collisions. Centralized energy management [1] uses clus-
ter-heads to manage CPU and radio consumption within a cluster. Centralized solu-
tions generally do not scale well because inter-cluster communication and interference
is hard to manage. Self organization [28] does not use clusters or hierarchies. It has a
notion of super frames similar to TDMA frames for time schedules and requires a
radio with multiple frequencies. It assumes a stationary network and generates static
schedules. This scheme has less than optimal bandwidth allocation. Slot reservations

Fig 4. Estimating power savings for two families of motes (Mica1, top, and Mica2, bottom),
 with the CPU on or asleep when the radio is off. Each vertical axis has a different scale,
and in all cases the “No power savings” column goes off the top (Mica1 28800, Mica2 72000

 mA-secsonds). Light gray is the radio-off power consumed (per hour), while dark gray is the
radio-on power consumed

 Mica1 with CPU on

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

No Power
Savings

Duty
Cycling

FPS

m
A

-s
ec

on
ds

Off Power

On Power

28800

 Mica1 with CPU asleep

0

200

400

600

800

1000

1200

1400

No Power
Savings

Duty
Cycling

FPS

m
A

-s
ec

on
ds

28800

 Mica2 with CPU on

0
2000
4000
6000

8000
10000
12000
14000
16000

18000
20000

No Power
Savings

Duty
Cycling

FPS

m
A

-s
ec

on
ds

72000

 Mica2 with CPU asleep

0

500

1000

1500

2000

2500

3000

No Power
Savings

Duty
Cycling

FPS

m
A-

se
co

nd
s

72000

Twinkle

TwinkleTwinkle

Twinkle

.

.

can only be used by the node that has the reservation. Other nodes cannot reuse the slot
reservation.

Network Power Scheduling for TinyOS Applications 459

ReOrgReSync[6] uses a combination of topology management (ReOrg) and chan-
nel access (ReSync) and relies on a backbone for connectivity. Relay Organization is a
topology management protocol which systematically shifts the network's routing bur-
den to energy-rich nodes (wall powered and battery powered nodes). Relay Synchroni-
zation (ReSync), is a TDMA-like protocol that divides time into epochs. Nodes
periodically broadcast small intent messages at a fixed time which indicate when they
will send the next data message. All neighbors listen during each others intent message
times. It assumes a low data rate and only one message per epoch can be sent.

Energy-efficient routing in wireless ad-hoc networks has been explored by many
authors, see [25,34,15,10] for examples. Topology management approaches exploit
redundancy to conserve energy in high-density networks. Redundant nodes from a
routing perspective are detected and deactivated. Examples of these approaches are
GAF [32] and SPAN [3]. Our approach does not seek to find minimum routes or
redundancy. These protocols are designed for systems that require much more general
communication throughout the network.

6 Conclusion

In this paper we have presented our experiences with Twinkle, the next-generation
implementation of FPS, and evaluated its use for two real-world TinyOS applications
and three mote platforms. We demonstrated that Twinkle can save 2-5x of the power
consumption for real applications that already use power management of some kind.
We saw a 2-4x improvement for the GDI application, and about 4x for the TinyDB
Redwoods deployment. We also covered an important enhancement to the idea of net-
work-layer power scheduling — the concept of scheduling partial flows that enable
broadcast — to make network power scheduling a realistic alternative for real deploy-
ments of TinyOS applications.

Acknowledgments. We are much indebted to several individuals of the TinyOS com-
munity for their collaborations, suggestions, and support. Rob Szewczyk for his con-
tinuous help and advice on power management, TinyOS, and GDI. Brano Kusy and
Miklos Maroti for their support on timers and time synchronization. Sam Madden for
his support on TinyDB and Gilman Tolle for his work on the Redwoods database. This
work was supported, in part, by the Defence Department Advanced Research Projects
Agency (grants F33615-01-C-1895 and N6601-99-2-8913), the National Science
Foundation (grant NSF IIS-033017), and Intel Corporation. Research infrastructure
was provided by the National Science Foundation (grant IEA-9802069).

References

[1] K.A. Arisha, M.A. Youssef, M.F. Younis, "Energy-aware TDMA based MAC for sensor
networks," IEEE IMPACCT 2002, New York City, NY, USA, May 2002.

[2] G. Asada, M. Dong, T. S. Lin, F. Newberg, G. Pottie, W. J. Kaiser, H. O. Marcy, "Wireless
integrated network sensors: low power systems on a chip," ESSCIRC '98. Proceedings of
the 24th European Solid-State Circuits Conference, The Hague, Netherlands, September
1998.

460 B. Hohlt and E. Brewer

[3] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris, "Span: an energy-efficient
coordination algorithm for topology maintenance in ad hoc wireless networks," MobiCom
2001, Rome Italy, July 2001.

[4] Chipcon. http://www.chipcon.com/files/CC1000_Data_Sheet_2_3.pdf
[5] W.S. Conner, L. Krishnamurthy, and R. Want, "Making everyday life a little easier using

dense sensor networks," Proceeding of ACM Ubicomp 2001, Atlanta, GA, Oct. 2001.
[6] W.S. Conner, J.Chhabra, M. Yarvis, L.Krishnamurthy, "Experimental Evaluation of

Topology Control and Synchronization for In-building Sensor Network Applications,"
ACM Workshop on Wireless Sensor Networks and Applications, September 2003.

[7] T.van Dam, K. Langendoen, "An Adaptive Energy-Efficient MAC Protocol for Wireless
Sensor Networks," SENSYS 2003, Los Angeles, CA, USA, November 2003.

[8] Digital Sun, Inc.: http://digitalsun.com
[9] L. Doherty, B.A. Warneke, B.E. Boser, K.S.J. Pister, "Energy and Performance

Considerations for Smart Dust," International Journal of Parallel Distributed Systems and
Networks, Volume 4, Number 3, 2001, pp. 121-133.

[10] Z. Haas, J. Halpern, and L. Li, "Gossip-based ad-hoc routing," IEEE INFOCOM 2002,
New York, NY, USA, June 2002.

[11] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K.S.J. Pister, "System architecture
directions for networked sensors," ASPLOS 2000, Cambridge, MA, USA, November
2000.

[12] J. Hill, D. Culler, "Mica: a wireless platform for deeply embedded networks," IEEE Micro,
22(6):12-24, November/December 2002.

[13] B. Hohlt, L. Doherty, E. Brewer, "Flexible Power Scheduling for Sensor Networks, " IPSN
2004, Berkeley, CA, USA, April 2004.

[14] W. Hong, "TASK In Redwood Trees", http://today.cs.berkeley.edu/retreat-1-04/weihong-
task-redwood-talk.pdf, NEST Retreat, Jan 2004.

[15] B. Karp and H.T. Kung, "GPSR: Greedy Perimeter Stateless Routing for wireless
networks," MobiCom 2000, Boston, MA, USA, August 2000.

[16] LAN MAN Standards Committee of the IEEE Computer Society, "IEEE Standard 802.11,
Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications,"
IEEE, August 1999.

[17] S.R. Madden, M.J. Franklin, J.M. Hellerstein, and W. Hong, "TAG: a tiny aggregation
service for ad-hoc sensor networks," 5th Symposium on Operating Systems Design and
Implementation, Boston, MA, USA, December 2002.

[18] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, J. Anderson, "Wireless sensor
networks for habitat monitoring," WSNA 2002, Atlanta, GA, USA, September 2002.

[19] M. Maroti, B. Kusy, G. Simon, A. Ledeczi, "The Flooding Time Synchronization
Protocol,” SenSys 2004, Baltimore, MD, USA, November 2004.

[20] J.Polastre,J.Hill,D.Culler,"Versatile Low Power Media Access for Wireless Sensor
Networks", SenSys 2004, Baltimore, ML,USA.

[21] G.J. Pottie, W.J. Kaiser, "Wireless Integrated Network Sensors," Communications of the
ACM, vol. 4, no. 5, May 2000.

[22] C.S. Raghavendra and S. Singh, "PAMAS - Power aware multi-access protocol with
signaling for ad hoc networks," ACM Communications Review, vol. 28, no. 33, July 1998.

Network Power Scheduling for TinyOS Applications 461

[23] V. Raghunathan, C. Schurgers, S. Park, and M.B. Srivastava, "Energy-aware wireless
microsensor networks," IEEE Signal Processing Magazine, vol. 19, no. 2, March 2002.

[24] RFM Monolithics. http://www.rfm.com/products/data/tr1000.pdf.
[25] E. M. Royer and C-K. Toh. "A review of current routing protocols for ad-hoc mobile

wireless networks," IEEE Personal Communications, April 1999.

[26] Sensicast Systems: http://www.sensicast.com.
[27] K. Sohrabi, J. Gao, V. Ailawadhi, and G.J. Pottie, "Protocols for self-organization of a

wireless sensor network," IEEE Personal Communications, Oct. 2000.
[28] K. Sohrabi and G.J. Pottie, "Performance of a novel self-organization for wireless ad-hoc

sensor networks," IEEE Vehicular Technology Conference, 1999, Houston, TX, May
1999.

[29] P. Buonadonna, J. Hellerstein, W. Hong, D. Gay, S. Madden, "TASK: Sensor Network in a
Box", European Workshop on Wireless Sensor Networks 2005, Istanbul, Turkey, February
2005.

[30] M. Stemm and R. Katz, "Measuring and reducing energy consumption of network
interfaces in hand-held devices," IEICE Trans. on Communications, vol. E80-B, no. 8, pp.
1125-1131, August 1997.

[31] R.Szewczyk, A.Mainwaring, J.Polastre,J.Anderson, D.Culler,"An Analysis of a Large
Scale Habitat Monitoring Application", SenSys 2004,Baltimore, ML,USA, November
2004.

[32] Y. Xu, J. Heidemann, D. Estrin, "Geography-informed energy conservation for ad hoc
routing," MobiCom 2001, Rome, Italy, July 2001.

[33] W. Ye, J. Heidemann, D. Estrin, "An energy-efficient MAC protocol for wireless sensor
networks," IEEE INFOCOM 2002, New York City, NY, USA, June 2002.

[34] Y. Yu, R. Govindan, and D. Estrin. "Geographical and Energy Aware Routing: a recursive
data dissemination protocol for wireless sensor networks," UCLA Computer Science
Department Technical Report UCLA/CSD-TR-01-0023, May 2001.

462 B. Hohlt and E. Brewer

