Enabling Context-Aware Services in Ninja: Demonstrating A Discoverable Media Mail Service

Barbara Hohlt
Francis Li
Anoop Sinha

CS262A Advanced Topics in Computer Systems

December 1999

Abstract
In the post-PC era, heterogeneous devices with significantly different input and output capabilities now populate our computing environments. To effectively communicate between and utilize such devices, we need support for mediating between those different capabilities. Given this support, we propose delegating tasks between devices for rendering information. In order to achieve this, support is also required for gathering, distributing, and receiving information about the environment. First, we propose a sample application, a discoverable media mail service, and describe the scenario in which it can take advantage of such support. We then detail our implementation of the architecture that addresses the needs outlined above, built on the Ninja services platform, and discuss the issues that we encountered in the process.

1 Introduction

The post-PC trend of off-the-desktop computing has provided a basis for new computing applications involving new forms of human-computer interaction. We have transitioned from the mainframe era, when multiple users shared a computer, to the personal computing era, where each user owns their own computer, and now as we approach the post-PC era we can have multiple computers “share” a user [12]. Our computing environments now contain a wide variety of devices, ranging from the fully-featured desktop workstation to the limited-capability handheld PDA. To effectively communicate between and utilize such devices, however, we need support for mediating between their different input and output capabilities. We propose a scenario that utilizes such support for delegating tasks between devices to render information.

For example, perhaps you want to check your e-mail on a handheld device such as a PDA. Given the limited bandwidth and display constraints of the device, you may wish only to receive a summarized or truncated version of your messages. If you receive an audio message, your PDA may not have the ability to play it back, so a textual transcript of the message is returned. However, if you are in an environment where a shared workstation or kiosk is nearby, you could play the audio through such a shared device.

In this scenario, the devices have knowledge about the user’s environment. This context is used to make decisions regarding the interpretation and presentation of the user’s information. In particular, we can transcode the content so that it better matches the output capabilities of the device being used. Or, we can delegate, or redirect, tasks to nearby devices that can better render the content. In this paper we describe our implementation of an architecture to support this scenario, built on the Ninja services platform, and discuss the issues that we encountered in the process.

In the next section, we describe and discuss the components of the architecture design that support managing context, redirection, and transcoding. We then discuss future work, followed by related work, and summarize our conclusions.

2 Architecture

2.1 Context

The context services architecture provides a uniform interface for enabling services and applications to distribute and receive contextual information. A context-aware service represents any collection of state that may be of interest to applications or other services. For example, a service may encapsulate a sensor such as an RF locator providing real-time location information or even a program that may be mining keywords from a conversation taking place in a room.

Service writers can implement a traditional interface for applications to request information, but in a dynamic computing environment the potentially frequent updates makes the query/response model inefficient and impractical. Instead of requiring polling to retrieve information, a context-aware service supports a subscription/broadcast model. Clients subscribe to a service by passing a query that specifies the subset of information desired. The service will then broadcast the information as it becomes available over an agreed-upon multicast IP group.

The ContextService abstract class extends the Ninja iSpaceService class. The remote methods addContextListener and removeContextListener handle adding and removing subscribers. A protected method broadcastUpdate is called by the service writer to send information to subscribing clients. NinjaRMI over multicast IP is used to broadcast the information while maintaining RPC call semantics. The application desiring updates implements the ContextListenerIF interface which includes a single method, contextChanged, which is called when broadcast information is received.

Figure 1 shows the steps involved in creating a subscription. An application or service implementing the ContextListenerIF interface calls the addContextListener method on the desired ContextService and requests a subscription, passing a query string (1). The ContextService adds the query and client address to internal lists, then contacts the MulticastManager service which returns the next available multicast IP group and port (2). This information is used to instantiate a MulticastReceiver on the same machine as the ContextService and is passed back to the application so that it can also instantiate a MulticastReceiver. When new information is available, the service writer calls the protected broadcastUpdate method with the new information. The broadcastUpdate method then makes a call to the appropriate MulticastReciever on the local machine with the new information. Since the call is carried over multicast IP, all MulticastReceivers on the same subnet listening to the same IP group and port will be invoked (3). The MulticastReceivers then call the application that instantiated them with the new information through the contextChanged method (4).

If the query has been submitted before, the ContextService will reuse the same multicast IP group and port for sending the information. Application writers should call removeContextListener on the ContextService so that the multicast IP group and port can be released back to the MulticastManager. Currently the ContextService architecture does not handle client or server failures. The ContextService should periodically check the clients subscribed to each query and remove dead clients from the lists, releasing the multicast IP group and port if all the clients are disconnected. Similarly, the MulticastReceiver could be programmed to call back to the service after a period of inactivity, notifying the client if the service is unavailable.

2.2 Redirection/Delegation

A user holding a limited capability device might like to access functionality on other available devices in his environment. This might range from highly instrumented device scenarios (controlling room lights, VCR controls, temperature controls [5]) to more basic scenarios, such as accessing the display and audio output functionality of locally available desktops. Using two different approaches, we explored this second scenario in the Ninja development environment by writing clients to the MediaManager Mail Service. Both approaches attempted to implement service call delegation (equivalently redirection), from a client to a different device. We wanted a device in our environment to be able to make a request on a client’s behalf. Our first considered redirection from low capability devices. Our second approach considered transparent redirection by service inspection.

2.2.1 Redirection System Requirements
Generic redirection among devices in an environment has a number of different underlying requirements:

· Service discovery/Device discovery

· Both services and devices will be dynamic resources; information about availability needs to be centrally tracked and then easily accessed from the clients in the environment.

· Data type and Service call representation

· A client needs a way to make parameterized requests to services.

· Brokering/Intermediation among clients and services

· To support redirection, clients need to be able to delegate requests to other devices, passing on information about the service call and the expected return. The receiving/ “delegated to” device needs to know how to make the service call on the requesting devices behalf.

· Inspection of service interfaces

· To support intermediation transparently, without special knowledge from clients or services, an intermediary needs to be able to query information about the destination service.

· Resource management and locking

· In an environment with shared resources that might include output capabilities, resource contention becomes an issue and facilities are needed for locking resources.

We used the Secure Discovery Service [2] as our naming service and chose to represent individual resources and devices as daemon services. Prompted by the fact that we considered a heterogeneous environment with multiple operating systems (Linux, Windows NT, Windows CE) and multiple programming languages (Java, Visual Basic), we approached the other requirements with custom solutions.

2.2.2 Approach #1: Redirection from Low Capability Devices

Service call and parameter representation requires creativity in the case of low capability devices. In our case, Windows CE devices were assumed to have no capability other than a simple socket through which we could pass bytes. We chose to represent function calls and parameters through tokenized strings, which we consider a sufficiently generic method of initiating function calls from limited capability devices. The strings that encapsulate function calls have the form:

RETURNTYPE^SERVICEURL^FUNCTIONCALL$PARAMETERS

The SDS is critical to execution of this string. Not only does it provide the SERVICEURL to the device initially, but it also provides the way for the proxy to get the stub to the service in question on execution.

Our proxy for CE devices in this scenario was written with the above service call representation in mind. The work is motivated by the same concerns as RMILite [1], which had a similar approach for Java-based clients. The proxy accepts the tokenized string from the device and can make the redirection function call on the devices behalf. A key point is that the proxy has no understanding of the contents of the string or of its semantics. It simply passes on the string to the named service, which then parses and executes the call. (This does involve having servers know how to parse such strings, but our second approach to redirection describes a method of accomplishing this without changing the server.)

In the typical case, the Proxy passes back the return response from the function call to the WinCE device as a tokenized string. We modified the semantics of the return to enable redirection to other devices in the environment. In particular, we enabled a Resource Daemon on a desktop device to act like a proxy (parse and forward tokenized strings) and then display the output from the function call (either text or audio). The steps of this process are outlined in the Figure 2.
In the approach above, neither CE Proxy nor the Desktop Daemon knows the semantics of the actual function call. Furthermore, the service is unaware that it is returning a redirected function call. The main drawback in this method is the need for the client and the service to understand the format of the tokenized string.

2.2.3 Approach #2: Redirection using Service Inspection

A more favorable redirection implementation involves minimal changes to the client and to the server, to the point where the intermediation between the two is transparent. Our approach to this involved using the Java Reflection classes to allow inspection of methods and parameters of a service. An extension of the SDS, which we call ContextSDS, performs the inspection. After inspection, the ContextSDS dynamically creates an intermediate wrapper class, compiles it, generates a stub for it, and passes that stub back to the requesting client. The code generated in the intermediate might include access to transcoding routines (in our case, truncation or summarization of text messages) or might encapsulate translation (such as taking the tokenized string in the first approach and making function calls on the clients behalf). The intermediate wrapper might also make decisions about device redirection. Each of these choices about what to generate could be incorporated into a descriptor that the client passes to the ContextSDS while requesting the service.

Having this dynamic intermediary requires minimal changes to client and server and also provides a place to transparently add policy controls and functionality based on local context information. The client and the server are hidden from the lower level details of redirection, and the wrapper could facilitate the delegation and service call translation among the devices in the environment. Figure 3 further outlines the process steps in redirection via service inspection.

2.2.4 Resources

Resources are services that represent exclusive resources on devices. The Resource abstract class extends ContextService and provides a remote interface for acquiring and releasing the resource. By extending ContextService, the service writer can choose to broadcast updates regarding the state of the resource. If a client attempts to acquire a resource that is already locked, either the call will return or the client can specify to be put on a queue and notified of availability. Once the lock has been acquired, the client can then call exclusive methods on the service. The service writer must call the verifyClient method inherited from Resource at the beginning of every method where protection is desired. The verifyClient method will check that the identify of the client matches that of the lock owner and throw an exception otherwise. To handle client failures, the lock will expire after a time of inactivity, as specified by the service writer. Currently, the Resource does not provide a means for the client to renew its lease on the lock- it must reacquire the lock, adding itself to the end of the queue if necessary.

2.3 Media Manager Service

The Media Manager service is implemented as a Ninja iSpace [3] service. Its purpose is to handle mail related mime types along with our own mime attribute extensions, across any mail protocol. It currently is an insecure service. The Media Manager implements the Media Manager interface. It receives requests from clients and in turn accesses the Mail Access interface. It optionally uses the Transcoder service to perform transformations on content objects. Users access their mail with calls to the Media Manager. These calls will access all mail across all the mail protocols a user wishes to use. The components of the Media Manager are the Media Manager interface, the Mail Access interface, the mail protocol table, the folder store, media messages, and content objects.

The Media Manager interface exports four methods: getFolders, getList, getMessage, and getMessageContent. getFolders returns the names of all folders for a given user across mail protocols. getList retrieves a specified number of messages from a given folder. getMessage retrieves a specified message, and getMessageContent retrieves a specified message part as a specified mime type.

The above methods access the Mail Access interface and call getMAFolders, getMAList, getMAMessage, and getMAMessageContent respectively. This interface may be implemented for any mail protocol– i.e. NinjaMail [7], POP, and IMAP. Currently only NinjaMail Access is implemented. For demonstrating the Media Manager with Ninja Mail Access we have populated a Postgres [10] database with a test set of email and voice mail.

The mail protocol table stores an instance of all the mail protocols that are currently implemented on behalf of the Media Manager and is loaded when the Media Manager starts. When a client makes a request the mail protocol table is consulted to get an instance of the desired mail protocol. Then the query is made on that instance. In some cases the folder store may be consulted. The folder store contains records of every protocol where a user has mail folders. For example, a user may want to get a list of all their mail folders. The folder store is the only persistent data in the Media Manager. This data could be stored in a distributed hash table on a Distributed Data Structure [4] platform. Currently, it must be maintained by an administrator.

Media messages are simplified versions of regular mail messages and are meant to be used with simpler clients. Only a few headers are handled and only one level of mime parts is supported. In other words, attachments within attachments are not handled. Each media message has a unique identifier called a mediaref which contains the name of the protocol and the unique identifier within that protocol. Each part of a media message is identified by its contentid. In order to avoid transferring unnecessary data, contentids and mediarefs are passed unless content is specifically requested.

The parts of a message are referred to as content objects and are specified by their contentids. Each content object has a mime type. The Media manager supports text, audio, and multipart mime types. In addition we have our own mime attribute extensions; skimmed audio, text summary, transcript, outline, and audio summary. By passing a contentid and the desired mime type to the getMessageContent() method, a client may have a content object returned as a particular mime type. The Transcoder service does the actual transcoding. This is useful for clients who do not have speakers, for example, and need their audio content displayed as text.

2.3.1 Transcoder Service

The Transcoder service is a Ninja iSpace service which transforms data. It is responsible for transforming data into text transcript, text summary, text outline, audio, audio summary, and skimmed audio. The basic transformations from speech to text and text to speech use programs developed with IBM's speech recognizer and synthesizer software development kits. Transcript represents content that has been generated by doing speech recognition. It has some methods that allow you to determine which parts of the audio correspond to which transcripted words. Text summary represents automatic text summarization using available tools. Outline organizes a text summary into an outlined form. Audio may represent original audio or that which has been synthesized from text. Audio summary is audio generated from a text summary. Skimmed audio is audio that has had all pauses removed, and also has been sped up for faster playback. The details of the data transformations for our own mime attribute extensions are the subject of a multi-media class project.

3 Discussion and Future Work

3.1 Security

Security and privacy is a key concern when contextual information is being gathered and distributed. Security policies must be accessible at a level where context-aware services can apply them to the data being distributed. When a client passes a subscription query to the service, an intersection should be applied between the data specified in the query and the data accessible based on the client’s permissions.

Access control to service functionality could be enabled by using the secure facilities of the SDS, which grants access to services based on certificates presented from client devices. This would provide a way to ensure that a client does not get access to a service without authorization. Redirection in this case becomes much more complex, with the need to delegate capabilities to the device or service making a request on the client’s behalf. Such permissions transfer should be temporary and revocable.

The Media Manager assumes messages are sent in the clear, otherwise it would not be possible to do transcoding. Mail Access must obviously be secure. For authentication, the Media Manager interfaces would need to be modified to provide requests for access to mail stores. It is the responsibility of the operators which implement the Mail Access interface to implement security correctly for a given mail protocol. If a message is encrypted, these operators must handle the decryption.

3.2 Extensibility

The media mail scenario represents only one instance of interpreting contextual information. There is a need for extensibility in this area, allowing for custom policies for interpreting context. The model of redirection via service inspection and generation provides a single point for adding extensibility- the ContextSDS. Service writers could create custom policies for the context SDS, separating the interpretation of context from the implementation of services. Considering additional scenarios and seeing how they would fit into this framework is necessary for determining a means for expressing the policy and working it into the architecture.

3.3 Development Environment

It is hard to develop in an environment where there exists a dependency on software that has not yet been developed. Such was the case in our project. The context and redirection portions of the project depended on the Media Manager. To remedy the situation we developed our interfaces first and created the Fake Media Manager and Fake Store.

The Fake Media Manager implements the Media Manager interface described above. It receives requests from clients and in turn accesses the Fake Store. The Fake Store reads all its mail files from disk at startup. We created a test set of email and voicemail to populate the store and a test set of their audio and text equivalents to simulate the Transcoder service.

Setting the input source of a speech recognition engine can be difficult. When the recognition engine starts up, it opens the sound device driver to receive dictation. In order to set our input source to an audio file we created our own custom audio library with IBM's speech recognition software development toolkit. We plan to create a custom audio library for sockets as an upgrade. The SDK has a C interface, and IBM does implement a Java Speech API. Unfortunately, at this time JSAPI does not support selecting custom audio libraries. SUN plans to use the Java Sound API in the future to control the audio input source. Another solution would be to use a symbolic link pointing to the custom audio library. For now, our implementation executes the recognizer and synthesizer as C programs from Java.

4 Related Work

Context-aware computing was investigated in systems like ParcTAB at Xerox PARC [9] and ActiveBadges at Olivetti Research [11]. However, these were proprietary hardware and software systems. More recently, Salber, et al at have been created an API specification for incorporating dynamic sensor information into an application, but it has not yet been made available to the public [8].

In the Ninja project at UC Berkeley, Hodes [5] explored many similar concerns in his exploration of Mobile Services. Our project was motivated by many of the same concerns, and the observations and discussion that he covers are highly related to our work. We focused on the problems of delegation and redirection in a context-aware environment, which is certainly one of his concerns as well, but we cover additional ground considering transcoding of media and dynamic intermediation. Czerwinski’s Secure Discovery Service provided the discovery and service lookup capabilities necessary for our implementation [2].

Our proxy work has similar motivations to the RmiLite and ActiveProxy implementation by Chen [1]. We implemented similar systems for a different computing platform (Windows CE), from which capabilities needed to be bridged into the Java environment.

The Iceberg [6] project at UC Berkeley, is exploring architectures for combining voice and data services in many, diverse, inter-connected networks. One of the aspects of the project is to provide system-level support for user interfaces that span many different modes of information access and device control.

5 Conclusions

In this paper we demonstrated an architecture for managing context, redirection, and transcoding. The architecture was used to implement an example scenario involving retrieving mail. The context services architecture provides a uniform interface for distributing and receiving contextual information that may be of interest to clients. The information is broadcast over multicast IP to clients that subscribe to receive asynchronous updates.

The media mail service handles transformations of mail related mime-types, as well as our own mime attribute extensions; skimmed audio, text summary, transcript, outline, and audio summary. Mail protocols are accessed through a common mail access interface which can be implemented for any mail protocol. We implemented NinjaMail access. Beyond simply converting data types, the transcoding services can transform content using analysis techniques such as speech recognition and summarization.

These services combined with the context architecture led to a first approach at redirecting tasks to different devices. In this first approach, applications communicated directly to the context and media mail services to make decisions regarding transcoding and redirecting tasks to other devices.

In the second approach we attempted to separate the interpretation of context from the application. An extended SDS, called the ContextSDS, inspected services upon lookup and returned dynamically generated wrapper services that interpreted context and transcoded return types before returning to the client. In the example scenario, a request for the media mail service would return a wrapper service that would retrieve the appropriately transcoded content type for the client. Since the wrapper service implements the same interface as the desired service, it is returned and executed transparently to the client.

This transparent transcoding and redirection via service inspection and generation presents an interesting model for enabling context-aware applications. By considering additional scenarios and seeing how they would fit into this framework, we may be able to generalize this model to allow custom policy for interpreting context.

6 Acknowledgements

Thanks to the folks we talked to in the Ninja team and especially to Steven Czerwinski who gave us significant insights into the use of the SDS and NinjaMail in this application.

7 References

1. Chen, Mike. RmiLite and ActiveProxy. Personal Communication and
http://post-pc.cs.berkeley.edu/rmilite/ 1999.

2. Czerwinski, Steven E. and Ben Y. Zhao, Todd D. Hodes, Anthony D. Joseph, and Randy H. Katz. “An Architecture for a Secure Service Discovery Service.” In Fifth Annual International Conference on Mobile Computing and Networks (MobiCom '99), Seattle, WA, August 1999, pp. 24-35.

3. Gribble, Steven D., Welsh, Matt, Brewer, Eric A., and Culler, David "The MultiSpace: an Evolutionary Platform for Infrastructural Services." In Proceedings of the 1999 Usenix Annual Technical Conference, Monterey, CA, June 1999

4. Gribble, Steven D., "Clustered Services with Persistent State." Qualifying Exam Proposal, UC Berkeley, Berkeley, CA 1999

5. Hodes, T. D. and R. H. Katz, E. Servan-Schreiber, L. A. Rowe. “Composable Ad hoc Mobile Services for Universal Interaction.” In Proceedings of The Third ACM/IEEE International Conference on Mobile Computing (MobiCom '97), Budapest, Hungary, September 1997, pp. 1-12.

6. Iceberg Project, UC Berkeley 1998, Project Goals, http://iceberg.cs.berkeley.edu/overview.html

7. NinjaMail, Ninja Project, UC Berkeley 1999

8. Salber, Daniel, Dey, Anind K., Abowd, Gregory D. "The Context Toolkit: Aiding the Development of Context-aware Applications." In Proceedings of the CHI 99 Conference on Human Factors in Computing Systems, Pittsburgh, PA, May 15-20, 1999, pp. 434-441.

9. Schilit, Bill N., Adams, Norman, and Want, Roy. "Context-Aware Computing Applications." In IEEE Workshop on Mobile Computing Systems and Applications, December 8-9, 1994..

10. Stonebraker, Michael ,"The Implementation of POSTGRES." In IEEE Trans. Knowledge and Data Engineering, 1990.

11. Want R, et al. “The active badge location system”. ACM Transactions on Information Systems, 10(1): 91-102, January 1992.

12. Weiser, Mark, and Brown, John Seely. "Designing Calm Technology" , PowerGrid Journal, v 1.01, http://powergrid.electriciti.com/ , July 1996. Also appeared as Chaper 6 - "The Coming Age of Calm Technogy" in the book "Beyond Calculation - The Next Fifty Years of Computing" by Peter J. Denning and Robert M. Metcalfe, Copernicus/An Imprint of Springer-Verlag.

Figure 1. Context Services

4

3

2

1

MulticastReceiver

MulticastReceiver

MulticastManager

Client

ContextService

Figure 4. Media Manager Mail Service

Figure 3. Redirection Approach #2

A client makes a request to the ContextSDS to look-up the MediaManager Service. (Note: this could also be the CEProxy making this request)

The ContextSDS inspects the MediaManager Service interface.

The ContextSDS receives information about the MediaManager interfaces

It uses that information to generate a wrapper class that it then provides the Java Client.

That wrapper class included semantics to redirect client requests to the Desktop’s Audio resource.

A getMessage() function call is delegated to the Desktop.

The Desktop makes the request for mail on the Java Client’s behalf

The Desktop plays the audio mail.

Figure 2. Redirection Approach #1

A WinCE devices passes a tokenized string to the CE Proxy encapsulating a redirection function call.

The CE Proxy forwards the redirection function call to the Desktop Daemon which manages the audio resource.

The Desktop Daemon passes along the service call to the MediaManager and awaits the return.

The MediaManager passes back the appropriate data to the Desktop Daemon which then displays (or plays) the returned data.

Transcoder Service

Folder Store

Client

Client

Client

Media Manager Service

Media Manager Interface

IMAP

Mail Access Interface

POP

Mail Access Interface

NinjaMail

Mail Access Interface

4

3

2

1

Audio Resource

MediaManager

Service

Desktop

CE Proxy

Windows CE Client

Location

8

7

6

5

4

3

2

1

MediaManager

Service

Wrapper

ContextSDS

Audio Resource

Desktop

Java Client

PAGE
9

